Search results for " radial solutions"

showing 3 items of 3 documents

Nodal Solutions for Supercritical Laplace Equations

2015

In this paper we study radial solutions for the following equation $$\Delta u(x)+f (u(x), |x|) = 0,$$ where $${x \in {\mathbb{R}^{n}}}$$ , n > 2, f is subcritical for r small and u large and supercritical for r large and u small, with respect to the Sobolev critical exponent $${2^{*} = \frac{2n}{n-2}}$$ . The solutions are classified and characterized by their asymptotic behaviour and nodal properties. In an appropriate super-linear setting, we give an asymptotic condition sufficient to guarantee the existence of at least one ground state with fast decay with exactly j zeroes for any j ≥ 0. Under the same assumptions, we also find uncountably many ground states with slow decay, singular gro…

Laplace transform010102 general mathematicsMathematical analysisInvariant manifoldStatistical and Nonlinear Physicsradial solutionLaplace equations radial solutions regular/singular ground state Fowler inversion invariant manifoldLaplace equation01 natural sciencesSupercritical fluidinvariant manifold.010101 applied mathematicsSobolev spaceregular/singular ground stateTransformation (function)Structural stabilityFowler inversion0101 mathematicsGround stateCritical exponentMathematical PhysicsMathematicsMathematical physics
researchProduct

Singular solutions to a quasilinear ODE

2005

In this paper, we prove the existence of infinitely many radial solutions having a singular behaviour at the origin for a superlinear problem of the form $-\Delta_pu=|u|^{\delta-1}u$ in $B(0,1)\setminus\{0\}\subset\mathbb R^N$,\, $u=0$ for $|x|=1$, where $N>p>1$ and $\delta>p-1$. Solutions are characterized by their nodal properties. The case $\delta+1 <\frac{Np}{N-p}$ is treated. The study of the singularity is based on some energy considerations and takes into account the classification of the behaviour of the possible solutions available in the literature. By following a shooting approach, we are able to deduce the main multiplicity result from some estimates on the rotation numbers asso…

Applied Mathematics34B1634B15Singular solutions superlinear problem multiplicity result p-Laplacian equation rotation number radial solutionsAnalysis35J60
researchProduct

Uniqueness of positive radial solutions to singular critical growth quasilinear elliptic equations

2015

In this paper, we prove that there exists at most one positive radial weak solution to the following quasilinear elliptic equation with singular critical growth \[ \begin{cases} -\Delta_{p}u-{\displaystyle \frac{\mu}{|x|^{p}}|u|^{p-2}u}{\displaystyle =\frac{|u|^{\frac{(N-s)p}{N-p}-2}u}{|x|^{s}}}+\lambda|u|^{p-2}u & \text{in }B,\\ u=0 & \text{on }\partial B, \end{cases} \] where $B$ is an open finite ball in $\mathbb{R}^{N}$ centered at the origin, $1<p<N$, $-\infty<\mu<((N-p)/p)^{p}$, $0\le s<p$ and $\lambda\in\mathbb{R}$. A related limiting problem is also considered.

General MathematicsWeak solutionta111010102 general mathematicsMathematical analysisuniquenessPohozaev identity01 natural sciences010101 applied mathematicsElliptic curveMathematics - Analysis of PDEspositive radial solutionsSingular solutionFOS: Mathematicssingular critical growthquasilinear elliptic equationsasymptotic behaviorsUniqueness0101 mathematics35A24 35B33 35B40 35J75 35J92Analysis of PDEs (math.AP)MathematicsAnnales Academiae Scientiarum Fennicae Mathematica
researchProduct